0 Trees and Matchings Richard

نویسندگان

  • Richard W. Kenyon
  • James G. Propp
  • David B. Wilson
چکیده

In this article, Temperley’s bijection between spanning trees of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. We show that the weighted, directed spanning trees (often called arborescences) of any planar graph G can be put into a one-to-one weight-preserving correspondence with the perfect matchings of a related planar graph H. One special case of this result is a bijection between perfect matchings of the hexagonal honeycomb lattice and directed spanning trees of a triangular lattice. Another special case gives a correspondence between perfect matchings of the “square-octagon” lattice and directed weighted spanning trees on a directed weighted version of the cartesian lattice. In conjunction with results of Kenyon (1997b), our main theorem allows us to compute the measures of all cylinder events for random spanning trees on any (directed, weighted) planar graph. Conversely, in cases where the perfect matching model arises from a tree model, Wilson’s algorithm allows us to quickly generate random samples of perfect matchings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trees and Matchings

In this article, Temperley’s bijection between spanning trees of a subgraph of the square grid on the one hand, and perfect matchings (also known as dimer coverings) of an associated subgraph of the square grid on the other, is extended to the setting of general planar directed (and undirected) graphs, where edges carry nonnegative weights that induce a weighting on the set of spanning trees. W...

متن کامل

Ramsey and Turán-type problems for non-crossing subgraphs of bipartite geometric graphs

Geometric versions of Ramsey-type and Turán-type problems are studied in a special but natural representation of bipartite graphs and similar questions are asked for general representations. A bipartite geometric graphG(m,n) = [A,B] is simple if the vertex classes A,B of G(m,n) are represented in R2 as A = {(1, 0), (2, 0), . . . , (m, 0)}, B = {(1, 1), (2, 1), . . . , (n, 1)} and the edge ab is...

متن کامل

The number of maximum matchings in a tree

We determine upper and lower bounds for the number of maximum matchings (i.e., matchings of maximum cardinality) [Formula: see text] of a tree T of given order. While the trees that attain the lower bound are easily characterised, the trees with the largest number of maximum matchings show a very subtle structure. We give a complete characterisation of these trees and derive that the number of ...

متن کامل

Ordering Trees with Perfect Matchings by Their Wiener Indices

The Wiener index of a connected graph is the sum of all pairwise distances of vertices of the graph. In this paper, we consider the Wiener indices of trees with perfect matchings, characterizing the eight trees with smallest Wiener indices among all trees of order 2 ( 11) m m with perfect matchings.

متن کامل

On the Total Number of Matchings of Trees with Prescribed Diameter

Let G = (V (G), E(G)) be a graph. An m−matchings of G is a set of edges of size m in which any two edges are mutually independent. Denote by z(G,m) the number of m−matchings of G. Let z(G) be the total number of matchings in G, namely z(G) = bn 2 c ∑ m=1 z(G,m). It’s well-known that z(G) are also named as Hosoya index. Let Tn,d be the set of trees of on n vertices with diameter d. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000